
S O F T W A R E E N G I N E E R I N G
M E D I E N I N F O R M A T I K

Introducing GitHub Classroom into a Formal Methods Module
Soaibuzzaman and Jan Oliver Ringert



Context
• Formal Methods for Software Engineering module of 6 ECTS

• Students:
– MSc Digital Engineering

• Computer science or engineering background
• Majority: Civil, electrical, or mechanical engineering

– MSc Computer Science for Digital Media
• Classic computer science background

– MSc Human-Computer Interaction
• Mixed backgrounds (computer science, psychology, etc.)



Module: Formal Methods for Software Engineering

Declarative
thinking Motivation Role in SE Applications

SAT solving Propositional logic SAT solver:
limboole

e.g., configuration
analysis

SMT solving First-order
theories

SMT solver:
Z3

e.g., code
analysis

Relational
modeling Relational FOL Alloy Analyzer e.g., architecture

analysis

Model-
checking Temporal Logic Model-checker:

nuXmv
e.g., reactive
system analysis

Ex
er
cis
es

Pr
oje

ct
(6
0h
)

Logic Tool Relevance



Assessment of Module
• Students work (individually or) in pairs

– Winter 22/23 we had 80 students and let them work in pairs/groups
– Winter 23/24 we wanted to move to individual submissions, but we forgot to remove this from the slides, so students worked

in pairs

• Passing each assignment is mandatory to do a project
– assignments are intended to prepare students for projects
– Examples:

• Enumeration of interesting SAT/SMT solutions
• deep vs. shallow embedding of feature models with cardinalities into Alloy

• Mark is 100% based on project results
– Implementation, Report, Presentation



Assignments
• Assignments come in alternating categories

– spec: Manual Specification writing
– impl: Automating a translation of problems to specifications

1. SAT spec: formulas, checking conclusions, verifying Role-Based-Access
2. SAT impl: Feature Model analysis [21], dead features, product preservation
3. SMT spec: Agatha puzzle [24, P.55], math puzzle, PC configuration
4. SMT impl: PC configuration from CSV-files, budget and purpose
5. Alloy spec: domain model, Agatha puzzle [24, P.55], Trash can [19]
6. Alloy impl: Analysis of Alloy modules: dead signatures, minimal scopes
7. nuXmv spec: LTL equivalence, counterexamples, chess knight moves



Example Tasks
• Alloy spec:



Example Tasks
• SAT impl



GitHub Classroom
• Platform to create assignments for students

– Creates task GIT repositories for each student who takes the assignment
– Students submit by pushing to their repository
– Supports automation for grading
– Supports synchronization with Learning Management Systems, e.g., moodle

• Provided free as part of GitHub Education for teachers



Goals of Migration
• Reduce turnaround time (submission, marking, feedback, resubmission)
• Reduce the number of resubmissions
• Reduce marking effort

• Provide fast and actionable feedback to students during assignments



Our GitHub Classroom Setup
• GitHub Actions set up the execution environment, install necessary software, run maven build
scripts to execute JUnit tests,

• Python script generates reports (standard are execution logs on console)

• Students submit a link to their repository on the LMS (decoupled for data protection)

• Alternatives:
– Repository creation possible with scripts, e.g., in GitLab
– Other continuous integration systems can easily replace GitHub Actions



Generated Feedback Reports



Observed Challenges



Migration Challenges
• Free-response questions

– Difficult to test all aspects, e.g., model is meaningful
• Testability vs. problem encoding

– Difficulty to write assertions when variable names/types not known
• Solutions in test cases

– Scenario encoding often necessary



Migration Challenges
• Submission format

– PDF not suitable for autograding

• False positives
– Empty implementation passes tests

• Task dependencies
– errors in problem encoding may lead to errors in analyses encoding

• Order and number of test cases
– Achieve early positive feedback for students



Conducted after each submission on paper

Surveys



Submissions per Exercise

• Overall, comparatively low retention rate (high drop out)
• Similar to previous iteration without GitHub ClassRoom



Difficulty of using GitHub for exercise submissions



Quality of the Automated Feedback



Free text comments
• The automated feedback was very important to evaluate in our cases it was very nice to
know what improvements can be made in the code further.

• The feedback really helps with the process of completing and understanding the tasks. If a
problem is encountered, the feedback helps in identifying the topic of concept that needs to
be revised for completion.

• Continuous feedback on each statement helped me compare and understand the
assignment better

• The automated tests didn’t test for multiple components of some category, which should
not be possible.

• Provide more information on why the test case has failed and also the exact errors.
• Maybe include test cases or in this case the LTLSPECS in the playground template for
easy access.

• There can be better infrastructure assignments for group submissions of the
assignments.



Conclusion
• Achievement of goals:

– Reduce turnaround time (submission& marking& feedback& resubmission)
– Reduce the number of resubmissions
– Reduce marking effort& at high cost of assignment creation
– Provide fast and actionable feedback to students during assignments

• Assignment setting (concrete task formulation) and autograding not independent
• Creativity and efforts needed to automate marking
• Manual checks of submissions are still necessary


