SOFTWARE ENGINEERING
MEDIENINFORMATIK

Introducing GitHub Classroom into a Formal Methods Module

Soaibuzzaman and Jan QOliver Ringert

Bauhaus-Universitat

Weimar

Context

o Formal Methods for Software Engineering module of 6 ECTS

e Students:

— MSc Digital Engineering
« Computer science or engineering background
» Majority: Civil, electrical, or mechanical engineering

— MSc Computer Science for Digital Media
» Classic computer science background

— MSc Human-Computer Interaction
» Mixed backgrounds (computer science, psychology, etc.)

Module: Formal Methods for Software Engineering

Logic Tool Relevance

DeC_Iar_atlve Motivation Role in SE Applications
thinking
" : SAT solver: e.g., configuration
First-order SMT solver: e.g., code
theories 73 analysis
Relational Relational FOL Alloy Analyzer ©.9., architecture
modeling y
Model- Model-checker: e '
: - : .g., reactive
checking JetmpeEl el nuxXmv system analysis

7))
O
L
O
-
O
X
LL]

Assessment of Module

» Students work (individually or) in pairs
— Winter 22/23 we had 80 students and let them work in pairs/groups

— Winter 23/24 we wanted to move to individual submissions, but we forgot to remove this from the slides, so students worked
in pairs

e Passing each assignment is mandatory to do a project
— assignments are intended to prepare students for projects
— Examples:
« Enumeration of interesting SAT/SMT solutions
» deep vs. shallow embedding of feature models with cardinalities into Alloy

e Mark is 100% based on project results
— Implementation, Report, Presentation

Assignments

e Assignments come in alternating categories
— spec: Manual Specification writing
— impl: Automating a translation of problems to specifications

SAT spec: formulas, checking conclusions, verifying Role-Based-Access
SAT impl: Feature Model analysis [21], dead features, product preservation
SMT spec: Agatha puzzle [24, P.55], math puzzle, PC configuration

SMT impl: PC configuration from CSV-files, budget and purpose

Alloy spec: domain model, Agatha puzzle [24, P.55], Trash can [19]

Alloy impl: Analysis of Alloy modules: dead signatures, minimal scopes
nuXmyv spec: LTL equivalence, counterexamples, chess knight moves

Nooabkwd =

Software Abstractions

Example Tasks - -

e Alloy spec: Task 1

Create an Alloy model for a scenario of your choice. The senario must make sense, i.e, nota sig A .. sig B
example, and it needs to be different from the examples in the lecture.

e Declare at least 4 signatures each with at least 2 fields.
e Use inheritance between signatures at least once.
e Define at least 2 facts and 2 predicates.

» Add two run commands to your model.
= The first run command should be unsatisfiable.

= The second run command should be satisfiable and return at least 2 instances.
Start from this Template.

Submission: Submit the permalink in src/main/java/de/buw/fm4se/alloy/Tasks.java (task_1)

Example Tasks

o SAT impl

Task 1: Feature Model Translation

E see the code walk-through and explanation of this task

For this task, you need to implement the translateToFormula(FeatureModel fm) method in FeatureModelTranslator
which will return the combined formula in limboole format for a given Feature Model. The translation rules are (as in

Lecture Slide 3):

Feature Model Relation Corresponding Formula
r is the root feature r
p is parent of feature ¢ c->p
m is a mandatory subfeature of p p->m

p is the parent of [1..n] grouped features feature g1,...gn p-> (g1] ... |gn)

p is the parent of [1..1] grouped features feature g1....gn p -> 1-of-n(g1,...gn)

After a correct translation all JUnit tests relating to consistency checks should pass.

Task 2: Analyze mandatory and dead features

@ see the code walk-through and explanation of this task

* Implement the deadFeatureNames(FeatureModel fm) method in FeatureModelAnalyzer Class which will

compute a (potentially empty) list of all dead features.

¢ Implement the mandatoryFeatureNames(FeatureModel fm) method in FeatureModelAnalyzer Class which will

compute a (potentially empty) list of all mandatory features.
For this, reuse the formula you get from Task 1.

Some very basic test cases exist. Run the test cases.

GitHub Classroom

» Platform to create assignments for students
— Creates task GIT repositories for each student who takes the assignment
— Students submit by pushing to their repository
— Supports automation for grading
— Supports synchronization with Learning Management Systems, e.g., moodle

e Provided free as part of GitHub Education for teachers

Goals of Migration

e Reduce turnaround time (submission, marking, feedback, resubmission)
e Reduce the number of resubmissions
e Reduce marking effort

e Provide fast and actionable feedback to students during assignments

Our GitHub Classroom Setup

o GitHub Actions set up the execution environment, install necessary software, run maven build
scripts to execute JUnit tests,

e Python script generates reports (standard are execution logs on console)
» Students submit a link to their repository on the LMS (decoupled for data protection)

e Alternatives:
— Repository creation possible with scripts, e.g., in GitLab
— Other continuous integration systems can easily replace GitHub Actions

Generated Feedback Reports

Feature Model Analyzer Translation

Test
XORFeature
Mandatory Feature
Single Feature
ORFeature

Parent Child

Status
EZ Passed
e Passed
E2 Passed
E2 Passed

B2 Passed

Reason

testMandatoryFeature() {

itureModel fm = new FeatureModell);

iture car = new Feature(“car");
setRoot(car);

iture motor = car.addChild("motor", true);

assertTrue(FeatureModelAnalyzer.checkConsistent(fm), "Expect consistent FM, but got inconsistent™);

fm.addConstraint(new CrossTreeConstraint(car, CrossTreeConstraint.Kind.EXCLUDES, motor));

assertFalse(FeatureModelAnalyzer.checkConsistent(fm), “Mandatory feature was excluded, expecting inconsistent™);

motor.setMandatory(false);

assertTrue(FeatureModelAnalyzer.checkConsistent(fm), "Optional feature was excluded, expecting consistent");

Bauhaus-Universitit
Weimar

Observed Challenges

Migration Challenges

e Free-response questions

— Difficult to test all aspects, e.g., model is meaningful
» Testability vs. problem encoding

— Difficulty to write assertions when variable names/types not known
e Solutions in test cases

@Test
void testCheckFormula7() {

String constraints = "({assert (not (forall ((x Person)) (exists ((y Persan)) (not (hates »x ¥1))1)1)";

- aggaﬂaﬁ&'@ﬂgg.di&goQtt@@ane:(@&%a:ﬁystraints), "Encoding of formula 7 is wrong");
¥

@Test
vold checkInv3AFileIlsDeleted () {
String addition = "one sig Fl, F2Z extends File {}%n" +
"fact { Trash = F1}";
assertTrue(checkSat("inv3", addition), "Unable to delete a file.");

b

Migration Challenges

Submission format
— PDF not suitable for autograding

False positives
— Empty implementation passes tests

Task dependencies
— errors in problem encoding may lead to errors in analyses encoding

Order and number of test cases
— Achieve early positive feedback for students

Bauhaus-Universitit
Weimar

Surveys

Conducted after each submission on paper

Submissions per Exercise

22.5 1

Number of Groups
= = = = %]
N o N d o
thn o U0 o un o

L
o
1

----- WS 22-23
—— WS 23-24

m——Ta
. ~.
~
S
-
e
~
et
——
—————
s
-
-
-
-
~
~-
-

-
-~
Mz
—————
““““

e Overall, com_

2 3 4 5 6 7
Exercise Number

4

e Similar to prewous |terat|on W|thout GltHub CIassRoom

Difficulty of using GitHub for exercise submissions

n=18
&] h
o
RN
n=13 n=12 n=7 ——

n=10 ...

Difficulty

3 4 5
Exercise Number

Quality of the Automated Feedback

& =18 h=13 n=12 n=10 n=7
¢
Z
e
= """-."?"" o L — TR R
o &,ﬁ
':.-E"
.,?_'-'..a
q“"&) o
{:'!' T T T T T
4‘3’1&&‘ 1 2 3 4 5

Exercise Number

Free text comments

 The automated feedback was very important to evaluate in our cases it was very nice to
know what improvements can be made in the code further.

e The feedback really helps with the process of completing and understanding the tasks. If a
problem is encountered, the feedback helps in identifying the topic of concept that needs to
be revised for completion.

e Continuous feedback on each statement helped me compare and understand the
assighment better

e The automated tests didn’t test for multiple components of some category, which should
not be possible.

e Provide more information on why the test case has failed and also the exact errors.

 Maybe include test cases or in this case the LTLSPECS in the playground template for
easy access.

e There can be better infrastructure assignments for group submissions of the
assianments.

Conclusion

Achievement of goals:
— Reduce turnaround time (submission, marking, feedback, resubmission)
— Reduce the number of resubmissions
— Reduce marking effort, at high cost of assignment creation
— Provide fast and actionable feedback to students during assignments

Assignment setting (concrete task formulation) and autograding not independent
Creativity and efforts needed to automate marking
Manual checks of submissions are still necessary

