
Introducing GitHub Classroom into a Formal
Methods Module

Soaibuzzaman[0000−0002−8971−5904] and Jan Oliver Ringert[0000−0002−3610−3920]

Bauhaus-University Weimar, Germany

Abstract. We have developed an MSc-level module on Formal Methods
for Software Engineering with exercises on applying SAT solvers, SMT
solvers, Alloy, and nuXmv. In the first iteration of the module, assign-
ments were submitted as documents and archive files. Here, we report
on our experience of moving the exercises to GitHub Classroom and au-
tomating the feedback process through test cases. The main challenges
we encountered were related to supporting free-response tasks and de-
signing test cases that allow for multiple solutions, provide incremental
feedback, and do not encode a solution. We present our setup of exercise
repositories, test cases, and feedback report generation. We detail our
approach in addressing the challenges of migrating from worksheets to
GitHub Classroom and report on survey-based student feedback.

Keywords: teaching, formal methods, GitHub classroom, feedback

1 Introduction

We have developed an MSc-level module on Formal Methods for Software En-
gineering with exercises on applying SAT solvers [20,4], SMT solvers [23,3], Al-
loy [15], and nuXmv [5]. As well recognized by others, practical examples and
exercises are important when teaching Formal Methods [6,7,8,26,19]. Our mod-
ule contains five chapters, where each technical chapter (2-5) is supported by a
specification and an implementation exercise (see Sect. 2). In specification ex-
ercises, students learn to use specification languages for smaller examples. In
implementation exercises, students automate the programmatic translation of
domain problems to solvers.

In the first iteration of the module, exercises were submitted as documents
and archive files. Here, we report our experience moving the exercises to GitHub
Classroom (GHC). Our main goals were to improve the student learning experi-
ence [28,32,10] by using autograding and providing immediate feedback [22] and
to shorten grading times and teacher resources.

We present our setups of exercise repositories, test cases, and feedback report
generation in Sect. 4.2. Our main challenges were supporting free-response tasks
and designing test cases that allow for multiple solutions, provide incremental
feedback, and do not encode a solution (see Sect. 4.3). We detail our approach
to addressing the challenges of migrating from worksheets to GHC. We report
on survey-based student feedback collected after each exercise in the year of the
migration to GHC in Sect. 5.

2 Soaibuzzaman and Ringert

Declarative
thinking

Motivation Role in SE Applications

SAT solving Propositional logic
SAT solver:
limboole

e.g., configuration
analysis

SMT solving First-order
theories

SMT solver:

Z3
e.g., code analysis

Relational
modeling

Relational FOL Alloy Analyzer
e.g., protocol

analysis

Model-checking Temporal Logic
Model-checker:

NuXMV
e.g., reactive

system analysis

Ex
er

ci
se

s

P
ro

je
ct

Fig. 1. Outline of Formal Methods for Software Engineering divided into five chapters

2 Module Overview

We have developed the module Formal Methods for Software Engineering as an
MSc-level module of 6 ECTS (roughly 180 hours of student workload in one
semester). The module is offered to students from three MSc degree programs
at Bauhaus-University Weimar: Computer Science for Digital Media, Human-
Computer Interaction, and Digital Engineering (most engineering and computer
science backgrounds with mandatory programming experience and a total of 36
ECTS in computer science subjects). Our module has no formal prerequisites,
but we expect that students have a BSc-level background in mathematics and
basic programming knowledge. Additionally, Software Engineering and Object-
Oriented Programming is recommended for Digital Engineering students from
non-computer-science backgrounds.

An outline of the module is shown in Fig. 1 with five main chapters spread
over 15 weeks. The first chapter Declarative thinking motivates the use of specifi-
cations for SE. Each following chapter introduces a logic, a language, a tool, and
applications, e.g., the second chapter SAT solving introduces propositional logic,
the syntax of limboole [4], and limboole; the final chapter Model-checking intro-
duces Linear Temporal Logic [25], the SMV language, and the nuXmv tool [5].

The module’s content and intended learning outcomes focus on selecting and
applying specification formalisms and tools to address software engineering chal-
lenges rather than on the tools’ underlying algorithms and decision procedures.
The module is assessed 100% based on a project. Passing all seven exercises is
mandatory before submitting a project. Two extensions or resubmissions (out of
seven) are granted for failed exercises. Students work in pairs or alone.

2.1 Exercise Structure

Chapters 2-5 from Fig. 1 were each supported by a specification exercise (one
week to complete) and an implementation exercise (two weeks to complete).

Introducing GitHub Classroom into a Formal Methods Module 3

Specification exercises require manually writing specifications and encoding
problems, e.g., solving a math puzzle using SMT as shown in Fig. 2 (Ex. 3, Task
2) or determining semantic equivalence of two LTL formulas using the nuXmv [5]
model-checker. The goal of these exercises was to learn the features of the new
language and to be able to express puzzles and problems in each formalism.

Implementation exercises require the automation of the encoding and the
solving tasks as a program, e.g., finding dead features in a feature model [21]
(SAT solving) or configuring a PC system from components with different prices,
budget limitations, and configuration constraints (SMT solving).

We chose Java as a common language known to most students. The genera-
tion of input for the solver was based on String manipulations for SAT solving
and APIs for SMT (JavaSMT [3]) and Alloy [15]. We did not provide an im-
plementation exercise for the Model-checking chapter, as the students focused
on their projects. The goal of these exercises was to learn the generalization of
problems and the automation of systematically encoding and solving them.

We provide an overview of exercises and present some excerpts of the work-
sheets in Fig. 2. All exercise materials are available for inspection, modification,
and reuse (Apache 2.0 license) from https://github.com/fm4se/exercises/:

1. SAT spec: formulas, checking conclusions, verifying Role-Based-Access
2. SAT impl : Feature Model analysis [21], dead features, product preservation
3. SMT spec: Agatha puzzle [24, P.55], math puzzle, PC configuration
4. SMT impl : PC configuration from CSV-files, budget and purpose
5. Alloy spec: domain model, Agatha puzzle [24, P.55], Trash can [19]
6. Alloy impl : Analysis of Alloy modules: dead signatures, minimal scopes
7. nuXmv spec: LTL equivalence, counterexamples, chess knight moves

3 Related Work

3.1 GH in Classroom

Numerous studies have evaluated the use of GitHub and GitHub Classroom for
teaching programming courses. Hsing and Gennarelli [14] conducted a study
exploring the advantages of incorporating GitHub into the classroom. Their re-
search revealed that students who received feedback through GitHub achieved
better learning outcomes and developed the necessary skills for collaborative
work. Their survey included 7,530 students and 300 educators. Furthermore, a
group of instructors from the University of Auckland [32] shared their experi-
ence using GitHub Classroom. They implemented Git and related systems in
various courses with varying class sizes, experience levels, and contexts. Their
findings indicated that while introducing GitHub to the classroom increased the
teaching workload, it provided significant value to the courses for students and
instructors.

Angulo and Aktunc [2] have shared their insights on utilizing GitHub as an
effective teaching tool for programming courses. They observed that GH offers

https://github.com/fm4se/exercises/

4 Soaibuzzaman and Ringert

Ex. 3, Task 2
Encode the Puzzle:

fm4se-ws23-smt-solving-ChristineMathews

/ puzzle.md in main
Cancel changes Commit changes...

se-buw /
fm4se-ws23-smt-solving-ChristineMathews

Code Issues Pull requests Actions Projects Security Insights

Show Diff

Edit Preview

(*) + = 110

(-) + = 17

(*) - = 90

(-) - = ?
Note: use the same names as in the template to encode the puzzle.

Ex. 3, Task 3
Create a reusable encoding of the selection of PC components (see below table) and
the calculated price of a PC.

– The selection must satisfy the listed constraints.
– Each component may only be selected once, i.e., you cannot include two CPUs.

The encoding should be reusable in the following sense:

– A user states a purpose and budget and the encoding produces models that
represent PC configurations matching the requirement, if possible.

– Different purposes add further constraints listed below.

Use the following template to start with. It already contains the encoding of the
variables budget and purpose. Keep these names.
Constraints:

– Each computer needs basic components: CPU, Motherboard, RAM, Storage
– ...

Purpose:

– Office use requires optical drive
– . . .

Ex. 5, Task 1
Create an Alloy model for a scenario of your choice. The senario must make sense,
i.e., not a sig A ... sig B example, and it needs to be different from the examples in
the lecture.

– Declare at least 4 signatures each with at least 2 fields.
– Use inheritance between signatures at least once.
– Define at least 2 facts and 2 predicates.
– Add two run commands to your model, one unsatisfiable and one that returns at

least 2 instances.
Ex. 7, Task 4
Create an SMV module to encode the moves of a knight on an 8x8 chess board. The
knight always starts at coordinate (0, 1).
Knights can move as illustrated below . . .

Fig. 2. Excerpts from exercise worksheets. The complete worksheets and task descrip-
tions are available from https://github.com/fm4se/exercises/.

https://github.com/fm4se/exercises/

Introducing GitHub Classroom into a Formal Methods Module 5

advantages to educators by providing a collaborative classroom environment.
Glassey [9] surveyed eight tools designed to ease the technical challenges of Git
and GH in an educational setting, analyzing their general, technical, and ped-
agogical aspects. In a separate case study [10], Haaranen and Lehtinen shared
their extensive experience teaching web software development using Git from
both the instructors’ and learners’ perspectives. Kertész [16] found that stu-
dents in an Operating Systems class preferred GHC’s collaborative platform.
They reported that the benefits of collaboration include learning from mistakes,
receiving faster assistance from peers, mastering a common development plat-
form, and improving decision-making through diverse solutions.

GitHub Classroom is also utilized to teach formal methods. To illustrate,
Divasón and Romero [7] utilized GHC to submit their students’ exercises in
formal verification teaching, while Rozier [26] employed GHC to teach applied
formal methods. In both instances, all homework was distributed and collected
through GitHub Classroom. However, the authors provided no further details
regarding their experience with the platform.

3.2 Autograding & Feedback

Automated grading of exercises has been a common feature in computer science
courses for a long time [13,22]. Messer et al. [22] conducted a systematic review
and report a focus mainly on OOP-languages and the correctness aspect. They
report limitations in the quality of feedback and imposing limits on showing cre-
ativity. Haldeman et al. [12] proposed a methodology for extending autograders
to provide meaningful feedback by collecting and analyzing exercise submissions
and generating hints that can be used in future semesters. Later, they proposed a
framework called CSF 2 [11], which provides formative feedback on programming
exercises. Although these systems and frameworks are related, they primarily fo-
cus on programming languages and may be challenging to adapt in the context
of formal methods.

3.3 Automatic Exercise Generation

The automatic generation of programming exercises and the concept of autograd-
ing have piqued interest. Sovietov [29] developed a general scheme for generating
programming exercises in a Python language course. This scheme can produce
intricate exercises that demand complex solutions from students. Tiam-Lee and
Sumi [30] presented a method for generating customized, entry-level program-
ming exercises, while Sarsa et al. [27] utilized large language models to generate
programming exercises automatically. The content generated was assessed qual-
itatively and quantitatively, mostly novel and sensible. Tscherter [31] proposed
the Exorciser system for generating automatic exercises for a theory of compu-
tation class, e.g., regular languages and Markov algorithms. Exorciser provides
feedback and visualization. Ábrahám et al. [1] discussed challenges in designing
and generating automatic exercises for satisfiability checking and setting quality
criteria for exercise generation.

6 Soaibuzzaman and Ringert

4 Migration of Exercises to GitHub Classroom

GitHub Classroom (GHC) is an educational tool that helps teachers use Git and
GitHub in their classes. Instructors create an assignment linked to a template
repository, generating an invitation URL for students [32,2]. When a student
accepts, an individual repository is created in the same GitHub organization.
All worksheets are available as GitHub template projects from https://github.c
om/fm4se/exercises (Apache 2.0 license).

4.1 GHC Setup and Exercises

To transition from our traditional worksheets to GHC, we have implemented
a task repository (template for replicated student repositories) for each work-
sheet. In our case task repositories are Java projects using the Gradle Build
Tool1. Each repository’s README.md (the worksheet) contains a comprehensive
task breakdown and additional resources like videos and examples.

We have leveraged GitHub Actions to create an automated testing system
and Continuous Integration (CI) workflow for evaluating student submissions.
Our tailored workflow installs required dependencies and binaries, e.g., lim-
boole [4], Z3 [23], nuXmv [5], related to each exercise. For some exercises, the
workflow generates unique tasks (as in Fig. 2 (Ex. 3, Task 2)). We have employed
a Community Action with a point bar2 to display the exercise completion rate.

Further GHC features and limitations We allowed students to complete
the exercises in pairs. GHC enables group assignments, and students are re-
sponsible for joining their own groups. However, joining the wrong group can
make it challenging for the instructor to locate the correct repository for grading
purposes [32]. To avoid this confusion, we provide administration rights to the
students for adding their team members to the repositories.

GHC enables linking learning management systems (LMS) to import student
rosters [2]. We did not link the systems to avoid data protection concerns and
instead asked students to submit their repository links on our LMS (Moodle).

The free GitHub plan only offers a monthly allocation of 2,000 GitHub Action
minutes per organization. This may limit the execution of test cases and report
generation. Our setup did not get anywhere near these limits.

4.2 Tests and Automated Feedback

Providing feedback is essential for students to comprehend the quality, depth,
and relevance expected of their work [28]. It offers specific information regard-
ing their learning growth, which is a great motivator. Moreover, it encourages
students to reflect on their work.
1 Gradle Build Tool https://gradle.org/
2 Available at https://github.com/marketplace/actions/points-bar

https://github.com/fm4se/exercises
https://github.com/fm4se/exercises
https://gradle.org/
https://github.com/marketplace/actions/points-bar

Introducing GitHub Classroom into a Formal Methods Module 7report.md 2024-07-19

1 / 1

Task 4: Knight Moves

Test Status Reason

start (0,1) ✅ Passed -

next (2,2) ❌ Failed ⚠ RuntimeException

reach (7,7) ❌ Failed Starting at (0,1) the knight can reach (7,7)

When running JUnit tests with Gradle, XML reports are generated with detailed information about the test
results. The XML report can be converted to a Markdown table to be included in the report. The table includes
the test name, status, and reason for failure. The table provides a clear overview of the test results and helps
identify any issues that need to be addressed.

Fig. 3. Excerpt of a feedback report of Ex. 7, Task 4 from Fig. 2

Automated feedback offers immediate evaluation of student work, empower-
ing them to improve before the final assessment. Traditional submit-and-mark
exercises have limitations, including long wait times, no opportunity for im-
provement after submission, and less relevant feedback. Descriptive feedback
helps students understand what went wrong and why, improving their work.

Safeguarding test integrity Task completion is measured by test cases (as
shown in Table 1). Providing these as part of the task repository exposes them
to tampering, e.g., a student could modify test cases to always pass. To address
this concern, we isolated the test cases within a secure cloud-based environment.
During the GitHub Actions evaluation, we retrieved these test cases, integrated
them into the student code, and executed the tests.3

Generating feedback report When running JUnit tests with Gradle, an XML
report is generated with detailed information about the test results. However,
this XML report is not very intuitive to read for students. As a solution, we have
parsed this XML report to create a comprehensive and easily understandable
feedback report in a markdown format for students. An excerpt of the feedback
report for Ex.7, Task 4 from Fig. 2 is presented in Fig. 3.

Local feedback and report generation GHC generates a feedback report
for every push to the repository. However, students may want to generate and
inspect feedback locally. We used Gradle and JUnit to execute the test cases,
and a Python script to create the feedback report. Given a local installation and
the required binaries of the FM tools, students may run the test cases in their
IDE or by using the command ./gradlew test. Given a Python installation
they may further generate the feedback report via ./gradlew generateReport.

Managing feedback report Automated feedback is pushed to a separate
branch of each repository to avoid the task of merging changes from the primary
branch. Fig. 3 presents an excerpt of the automated feedback report for Ex.7,
3 Recently, GHC introduced protected file paths, which flag changes in essential files,

including tests, providing an out-of-the-box solution to detect tampering.

8 Soaibuzzaman and Ringert

1 @Test
2 void checkNumberOfFieldsPerSignature () {
3 Module world = getModule(Tasks.task_1); // parse with Alloy APIs
4 for (Sig s : world.getAllSigs ()) { // iterate over signatures
5 assertTrue(s.getFields ().size() >= 2, // check min num. fields
6 "Number of fields is less than 2 in signature " + s.label);
7 }
8 }

Listing 1. Example of using Alloy API for checking one criterion of the free-response
task Ex. 5, Task 1 from Fig. 2: “... signatures each with at least 2 fields”

Task 4 from Fig. 2. The report comprises three columns: test, status, and reason
for failures. The first test checks if the knight starts at (0,1) (as required by the
task) and passes. The next test assesses whether the knight can move to (2,2)
in the next step, but it fails due to a runtime error (this could be due to parsing
errors). Lastly, the third test fails because the knight should be able to reach
(7,7) starting from (0,1), which is not correctly implemented.

4.3 Migration Challenges

We reused most tasks from our worksheets with minor adjustments. We now list
some challenges for moving from worksheet-based to GHC exercises. We indicate
for each challenge whether it relates to specification tasks (spec), implementation
tasks (impl), or to provide meaningful feedback (feedback).

Free-response questions (challenges: spec, feedback) Our worksheets included
many free-response questions, e.g., “Provide a satisfiable formula with at least 3
three variables and at least 3 different operators” or Ex. 5, Task 1 from Fig. 2, to
evaluate higher-order thinking [18] and suppress plagiarism. To evaluate answers
in GHC, we had to implement ad-hoc parsers or use APIs where available, e.g.,
for parsing and inspecting Alloy modules as in Listing 1. Both are not trivial
and add overhead when setting exercises.

Problem encoding (challenges: spec, impl) Many tasks require coming up with
suitable domain concept formalizations, e.g., PC component types in SMT (as in
Fig. 2 (Ex. 3, Task 3)) can be encoded as integer constants or as datatypes (with
their own pros/cons). We believe that this challenge/freedom is very important,
but it makes an automated assessment of submissions challenging. We developed
some minimal specification interfaces, e.g., variables for the budget and purpose
of PCs, to construct and assess scenarios independent of the chosen encoding.
The test case in Listing 2 only uses this specification interface (variables purpose
and budget) to check a possible PC configuration. In general, finding a balance
of what variables to provide is non-trivial and specific to each task.

Introducing GitHub Classroom into a Formal Methods Module 9

1 @Test
2 void testPurposeOffice1 (){
3 assertTrue(Z3Utils.isSatForConstraints(code , //check possible PC config
4 "(assert (= purpose office))\n(assert (= budget 283))"),
5 "For office purpose , 283 Euro is enough."); // feedback if failed
6 }

Listing 2. Example of using a specification interface (variables purpose and budget)
for checking a possible PC configuration of Ex. 3, Task 3 from Fig. 2

1 @Test
2 public void testTask1a () throws IOException , InterruptedException {
3 String testSpec = code + "\nLTLSPEC\n!(F(knight [0]=7& knight [1]=7));";
4 String res = NuxmvExecutor.runNuxmv(testSpec); //run nuXmv with spec
5 assertTrue(res.contains(//check nuXmv output for expected result
6 "!(F (knight [0] = 7 & knight [1] = 7)) is false"),
7 "Starting at (0,1) the knight can reach (7,7)"); // feedback if failed
8 }

Listing 3. Example of verifying additional LTL specifications on possible knight moves
to check the user-defined transition relation of Ex. 7, Task 4 from Fig. 2

Solutions in test cases (challenges: spec, feedback) One way to test a correct
encoding of constraints is by checking semantic entailment or equivalence with
a solution constraint, e.g., employed in Alloy4Fun [19]. To improve feedback,
we decided to publish test cases for inspection to our students. A simple check
of constraint equivalence was no longer possible as it would reveal the solution
constraints (as in Fig. 2 (Ex. 3, Task 3)). Instead, we constructed multiple satis-
fiable and contradicting constraints (e.g., Listing 2 or Listing 3) for analysis and
feedback generation.

Scenario encoding For effective analysis, we had to develop individual meth-
ods to encode and check scenarios (test cases of specifications) in SAT, Alloy,
SMT, and nuXmv, e.g., to check transition relations of an SMV module (as in
Fig. 2 (Ex. 7, Task 4)), our tests add LTLSPEC constraints and check these (see
Listing 3). This requires creative extensions of specifications with constraints
and the interpretation of the generated output of tools, as not all provide APIs.

Submission format (challenges: spec) A further challenge was to find a canon-
ical format for collecting and submitting specification documents. Previously,
students submitted PDFs, but specifications from these are not easily extracted.
We used the interactive online editor Formal Methods Playground4 (FMP).
While separate, external storage of specifications makes the submission less self-
contained, the students were used to FMP from lectures and links embedded in
lecture slides. We also provided templates to get started, where necessary.

4 Available from https://play.formal-methods.net

https://play.formal-methods.net

10 Soaibuzzaman and Ringert

False positives (challenges: impl, feedback) Some test cases pass when no con-
straints are generated; thus, some scores might go down when providing correct
but partial solutions. This risks confusion or discouragement of students. We
handled these cases by adding explicit explanations on the worksheets.

Task dependencies (challenges: impl, feedback) Our implementation exercises
were mini-projects where later tasks might depend on earlier ones, e.g., finding
dead features in a Feature Model requires correct encoding of Feature Models.
When grading manually, one could trace failures of later tasks to errors in earlier
ones and award partial marks. In our setup, this was not possible. We indicated
dependencies on the worksheets to make students aware of the grading limitation.

Order and number of test cases (challenges: feedback) Although not relevant
from a correctness point of view, we suspect that the order of test cases has an
impact on delivering feedback. Typically, students solve exercises incrementally,
and we ordered test cases to provide early, positive feedback, e.g., assessing ade-
quate numbers of signatures in an Alloy module before analyzing its predicates.
Our implementation tasks already contained (limited) JUnit tests in the first
iteration to confirm that students were going in the right direction. We signifi-
cantly extended the number of test cases and assertions for feedback generation
and correctness checking. Still, some students asked for covering additional edge
cases (see Sect. 5).

Long-running test cases and exceptions (challenges: feedback) Runtime
errors, memory leaks, and exceptions thrown during testing may fail or interrupt
test cases. We provide feedback on the type of exception, but understanding
why the exception occurred without analyzing the code is challenging. Heavy
computation, like infinite loops, further complicates the feedback process. We
addressed long-running test cases by introducing timeouts, and we later (from
Ex. 4) provided all test cases for local analysis of exceptions.

Additional Challenges (challenges: spec, impl, feedback) (1) We were not able
to automatically generate meaningful feedback for text-based questions, e.g.,
“Explain the provided nuXmv counter-example”. (2) For limboole and nuXmv,
where we did not have parsers nor APIs, our analyses depend on output of
the tools and are thus fragile to changes, e.g., tool updates. (3) Some students
exploited the limited number of test cases, e.g., the SMT encoding of PC compo-
nents in one submission handles some edge cases of budget values by returning
an empty result.

4.4 On Test Creation Efforts

Some of the challenges listed above similarly apply to general programming
exercises regardless of the inclusion of Formal Methods, e.g., False positives or

Introducing GitHub Classroom into a Formal Methods Module 11

Exercises No. of Test Cases No. of Assertions Published Test Cases
1 31 56 0
2 23 52 4
3 21 48 0
4 9 15 9
5 31 30 31
6 15 26 15
7 10 33 10

Table 1. Number of test cases, assertions (different feedback texts), and test cases
published to students per exercise; after exercise 3, all test cases were published

Task dependencies. However, others are clearly specific, e.g., Problem encoding
or Scenario encoding.

One challenge we found during the later inspection of submissions is related
to the intended use of FM tools in implementation exercises (Ex. 2, 4, and 6). One
pair of students solved most analysis tasks by a translation to SMT; however,
they did not find a suitable encoding for one edge case and handled it on the
Java level (exploiting a limited number of test cases). While handling parts of the
problem in Java and others in SMT might be elegant, this was not the intended
learning outcome here. In general, our setup of the exercises would make it very
difficult to assess whether solutions are computed in Java or SMT.

Table 1 summarizes the total number of test cases and assertions for each
exercise and the number of test cases made available to students. Each test case
offers feedback through a varied set of assertions (often, later assertions are not
meaningful without earlier ones). The median number of test cases is 21, while
the median number of assertions is 33.

For exercises 1 and 3, no test cases were provided to students. Similarly,
exercise 2 only had 4 test cases out of 23 available to students. However, after
reviewing responses in student surveys, we provided all the test cases for exercises
4 to 7 to students. This potentially reduced their difficulties and helped them
work better, as reflected in Figures 5 and 7. Obviously, without providing test
cases, we would have avoided challenge Solutions in test cases. However, we
believe that the more transparent feedback outweighs the necessary adjustments.

One concern regarding the up-front availability of all test cases is that stu-
dents could tweak their specifications and code just enough to make all test cases
pass rather than develop complete solutions to the given tasks. An alternative
is to split the test cases into two sets, one for feedback and one for marking. We
leave a deeper evaluation of this to future work.

We notice that the preparation of exercises for GHC involves a significant
investment of resources. Designing appropriate tasks and worksheets to cover
taught materials and intended learning outcomes remained the same with or
without GHC. Designing reasonable feedback and grading through test cases can
be very challenging and difficult to get right, as all possible reasonable solution
attempts by students should be taken into account. For us, this investment was
paid back by reducing the time to inspect and grade homework submissions

12 Soaibuzzaman and Ringert

manually (only necessary in edge cases). However, low-quality or inadequate
test cases could diminish this return on investment.

Finally, collusion and students passing on solutions over the years harm the
reuse of the exercises for future iterations. We tried to mitigate this by includ-
ing free-response questions and individually generated tasks in the specification
exercises. For the implementation exercises, we employed plagiarism-checking
tools.

4.5 Benefits and alternatives to GHC

As discussed in Sect. 4.1 we did not use all features of GHC. Still, for our case, it
provided several benefits: automated replication of task repositories for students,
automated execution of test cases and report generation, user management of
student accounts, and available infrastructure. However, our exercise materials
are not tied to GHC. The setup may be replicated on any other infrastructure
that provides repositories and continuous integration.

5 Surveys and Evaluation

Over the past two years (WS22-23 and WS23-24), we have been conducting the
Formal Methods for Software Engineering module. In the first iteration, a total of
86 students enrolled (24 groups submitted the first exercise), while in the second
iteration, 44 students enrolled (11 groups submitted the first exercise)5. Figure 4
illustrates the number of groups per exercise. We observed that almost half of
the groups dropped out in both semesters over all the exercises submitted. In
WS22-23, submissions went from 24 groups to only 13 groups for the last exercise.
Similarly, in WS23-24, we received 11 submissions for the first exercise but only
5 for the last exercise.

5.1 Surveys in WS23-24

We now report data from voluntary paper-based surveys conducted among stu-
dents on the days after the submission of exercises in WS23-24. We conducted
these surveys to gain insight into the effectiveness of implementing GitHub Class-
room with automated feedback. The surveys were designed to evaluate the ease
of using GitHub for submitting exercises, the quality of automated feedback,
and whether it contributed to a perceived overall improvement of student work
or additional workload. Additionally, we gathered suggestions from students to
refine the submission process and enhance the quality of the exercises.

Figure 5 illustrates the declared level of difficulty experienced by students
while using GitHub to work on and submit exercises. Notably, most students,
including those from the Digital Engineering program (mixed background from

5 Enrolling is an informal act for obtaining access to teaching materials and the num-
bers of initial submissions are more reliable indicators for participation.

Introducing GitHub Classroom into a Formal Methods Module 13

1 2 3 4 5 6 7
Exercise Number

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Nu
m

be
r o

f G
ro

up
s

WS 22-23
WS 23-24

Fig. 4. Submission per exercise for the Winter semesters of 2022-23 and 2023-24

1 2 3 4 5 6 7
Exercise Number

Ve
ry
Ea

sy

Ea
sy

Neu
tra

l

Diffi
cul

t

Di
ffi

cu
lty

n=18

n=13 n=12

n=10

n=7

n=3 n=4

Fig. 5. The difficulty of using GitHub for completing the exercises

engineering disciplines), found using GitHub to be easy. Additionally, we ob-
served that the students grew more comfortable with the platform over time.
In the initial two exercises, the median difficulty level reported by students was
“neutral” to “easy”, whereas for the subsequent exercises, the median level ranged
from “easy” to “very easy”. It should be highlighted that the number of students
participating in the exercises and surveys decreased over time.

Figure 6 shows the perceived quality of the automated feedback for the ex-
ercises. At first, we relied solely on the feedback given by GitHub Classroom
through the GitHub Actions logs for the initial exercise. Unfortunately, but not
surprisingly, the students found interpreting and comprehending the feedback
challenging. As a result, we began automatically extracting feedback from test
reports and aggregating it in tabular format starting from exercise 3. We ob-
served that the quality of the feedback remained “good” for the first five exercises
and even improved for the final two.

14 Soaibuzzaman and Ringert

1 2 3 4 5 6 7
Exercise Number

Ve
ry
Poo

r

Poo
r

Ac
cep

tab
le

Goo
d

Ve
ry

Goo
d

Qu
al

ity
n=18 n=13 n=12 n=10 n=7

n=3

n=4

Fig. 6. The quality of the automated feedback for the exercises

1 2 3 4 5 6 7
Exercise NumberStr

on
gly

Disa
gre

e

Disa
gre

e

Neu
tra

l

Agre
e

Str
on

gly

Agre
e

Ag
re

em
en

t

n=17 n=13 n=12 n=9 n=7 n=3

n=4

n=17

n=13

n=12 n=9 n=7

n=3

n=4

Helped
Unnecessary Work

Fig. 7. Agreement on automated feedback being helpful (blue) or unnecessarily causing
more work (red)

The data presented in Fig. 7 (blue) illustrates how students agree with the
usefulness of automated feedback in improving their work. At the same time, Fig.
7 (red) highlights their level of agreement on whether generated feedback caused
a higher workload. The majority of students believe that automated feedback
has been beneficial in enhancing their work across all exercises, as reflected by
the median. However, there were some instances of disagreement among students
in exercises 2 and 3 (test cases not available to students), with 75% remaining
neutral or strongly agreeing. Nonetheless, automated feedback was found to be
helpful in improving their work in subsequent exercises. In terms of additional
workload, students generally disagreed that feedback added to their workload,
except for exercise 2, where the median was different.

In addition to the Likert scale questions above, our survey also includes
open-ended prompts asking about challenges and suggestions. We analyzed the
textual responses and grouped them into two categories: automated feedback
and GH/GHC. These categories align with the themes presented in Figures 5-7.

Introducing GitHub Classroom into a Formal Methods Module 15

Automated Feedback Students expressed appreciation for automated feed-
back, citing benefits like improved work quality, bug resolution, and better un-
derstanding of different scenarios:

– The automated feedback was very important to evaluate in our cases it was
very nice to know what improvements can be made in the code further.

– The feedback really helps with the process of completing and understanding
the tasks. If a problem is encountered, the feedback helps in identifying the
topic of concept that needs to be revised for completion.

– Continuous feedback on each statement helped me compare and understand
the assignment better.

However, they also identified areas for improvement, such as wanting more
detailed feedback and the need to check all corner cases:

– The automated tests didn’t test for multiple components of the some category,
which should not be possible.

– Provide more information on why the test case has failed and also the exact
errors.

– Maybe include test cases or in this case the LTLSPECS in the playground
template for easy access.

GH/GHC Overall, students had a positive experience using GitHub and GitHub
Classroom despite facing some challenges including group submissions and not
having all the test cases locally (communicated verbally in class), which were
provided later for exercises 4-7:

– The assignment submissions on GitHub really helped me know what is going
wrong with any work looking at the feedback.

– There can be better infrastructure assignments for group submissions of the
assignments.

5.2 Threats to Validity

Likert scales are well-known to be subject to various forms of response bias [17],
thus, one has to be careful with conclusions solely based on these. Another
potential bias in our data is the decline in the number of answers (n in Fig-
ures 5-7). While all figures show a positive trend, we cannot make conclusions
about whether the quality of worksheets improved, the students became more
experienced with GHC or the feedback, or whether simply the more experienced
or confident students remained participating.

6 Conclusion

We have presented a brief overview of our module, Formal Methods for Software
Engineering, and its two exercise types (specification and implementation). We

16 Soaibuzzaman and Ringert

identified challenges in migrating from traditional submissions to GitHub Class-
room (GHC) with automated grading and feedback report creation. Student
surveys indicate low difficulty of using GHC, good quality and helpfulness of
automated feedback, and low overhead for students.

References

1. Ábrahám, E., Nalbach, J., Promies, V.: Automated exercise generation for satis-
fiability checking. In: FMTea 2023. LNCS, vol. 13962, pp. 1–16. Springer (2023).
https://doi.org/10.1007/978-3-031-27534-0_1

2. Angulo, M.A., Aktunc, O.: Using GitHub as a Teaching Tool for Programming
Courses. In: 2018 Gulf Southwest Section Conference Proceedings. p. 31594. ASEE
Conferences. https://doi.org/10.18260/1-2-370.620-31594, http://peer.asee.org/
31594

3. Baier, D., Beyer, D., Friedberger, K.: JavaSMT 3: Interacting with SMT solvers in
java. In: CAV, 2021, Proceedings, Part II. LNCS, vol. 12760, pp. 195–208. Springer
(2021). https://doi.org/10.1007/978-3-030-81688-9_9

4. Biere, A.: Limboole. https://fmv.jku.at/limboole/ (2012), accessed 04/2024
5. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,

Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: CAV.
LNCS, vol. 8559, pp. 334–342. Springer (2014)

6. Davies, J., Simpson, A., Martin, A.P.: Teaching formal methods in context. In:
TFM 2004, Proceedings. LNCS, vol. 3294, pp. 185–202. Springer (2004). https:
//doi.org/10.1007/978-3-540-30472-2_12

7. Divasón, J., Romero, A.: Using krakatoa for teaching formal verification of java
programs. In: FMTea 2019. LNCS, vol. 11758, pp. 37–51. Springer (2019). https:
//doi.org/10.1007/978-3-030-32441-4_3

8. Dubois, C., Prevosto, V., Burel, G.: Teaching formal methods to future engineers.
In: FMTea 2019. LNCS, vol. 11758, pp. 69–80. Springer (2019). https://doi.org/
10.1007/978-3-030-32441-4_5

9. Glassey, R.: Adopting Git/Github within Teaching: A Survey of Tool Support. In:
CompEd ’19. pp. 143–149. ACM. https://doi.org/10.1145/3300115.3309518

10. Haaranen, L., Lehtinen, T.: Teaching Git on the Side: Version Control System as
a Course Platform. In: ITICSE 2015. pp. 87–92. ACM. https://doi.org/10.1145/
2729094.2742608

11. Haldeman, G., Babeş-Vroman, M., Tjang, A., Nguyen, T.D.: CSF: Formative Feed-
back in Autograding 21(3), 1–30. https://doi.org/10.1145/3445983

12. Haldeman, G., Tjang, A., Babeş-Vroman, M., Bartos, S., Shah, J., Yucht, D.,
Nguyen, T.D.: Providing Meaningful Feedback for Autograding of Programming
Assignments. In: SIGCSE ’18. pp. 278–283. ACM. https://doi.org/10.1145/3159
450.3159502

13. Hollingsworth, J.: Automatic graders for programming classes. Commun. ACM
3(10), 528–529 (1960). https://doi.org/10.1145/367415.367422

14. Hsing, C., Gennarelli, V.: Using GitHub in the Classroom Predicts Student
Learning Outcomes and Classroom Experiences: Findings from a Survey of Stu-
dents and Teachers. In: SIGCSE ’19. pp. 672–678. SIGCSE ’19, ACM. https:
//doi.org/10.1145/3287324.3287460

15. Jackson, D.: Alloy: a language and tool for exploring software designs. Commun.
ACM 62(9), 66–76 (2019). https://doi.org/10.1145/3338843, https://doi.org/10.1
145/3338843

https://doi.org/10.1007/978-3-031-27534-0_1
https://doi.org/10.1007/978-3-031-27534-0_1
https://doi.org/10.18260/1-2-370.620-31594
https://doi.org/10.18260/1-2-370.620-31594
http://peer.asee.org/31594
http://peer.asee.org/31594
https://doi.org/10.1007/978-3-030-81688-9_9
https://doi.org/10.1007/978-3-030-81688-9_9
https://fmv.jku.at/limboole/
https://doi.org/10.1007/978-3-540-30472-2_12
https://doi.org/10.1007/978-3-540-30472-2_12
https://doi.org/10.1007/978-3-540-30472-2_12
https://doi.org/10.1007/978-3-540-30472-2_12
https://doi.org/10.1007/978-3-030-32441-4_3
https://doi.org/10.1007/978-3-030-32441-4_3
https://doi.org/10.1007/978-3-030-32441-4_3
https://doi.org/10.1007/978-3-030-32441-4_3
https://doi.org/10.1007/978-3-030-32441-4_5
https://doi.org/10.1007/978-3-030-32441-4_5
https://doi.org/10.1007/978-3-030-32441-4_5
https://doi.org/10.1007/978-3-030-32441-4_5
https://doi.org/10.1145/3300115.3309518
https://doi.org/10.1145/3300115.3309518
https://doi.org/10.1145/2729094.2742608
https://doi.org/10.1145/2729094.2742608
https://doi.org/10.1145/2729094.2742608
https://doi.org/10.1145/2729094.2742608
https://doi.org/10.1145/3445983
https://doi.org/10.1145/3445983
https://doi.org/10.1145/3159450.3159502
https://doi.org/10.1145/3159450.3159502
https://doi.org/10.1145/3159450.3159502
https://doi.org/10.1145/3159450.3159502
https://doi.org/10.1145/367415.367422
https://doi.org/10.1145/367415.367422
https://doi.org/10.1145/3287324.3287460
https://doi.org/10.1145/3287324.3287460
https://doi.org/10.1145/3287324.3287460
https://doi.org/10.1145/3287324.3287460
https://doi.org/10.1145/3338843
https://doi.org/10.1145/3338843
https://doi.org/10.1145/3338843
https://doi.org/10.1145/3338843

Introducing GitHub Classroom into a Formal Methods Module 17

16. Kertész, C.Z.: Using GitHub in the classroom - a collaborative learning experience.
In: SIITME 2015. pp. 381–386. https://doi.org/10.1109/SIITME.2015.7342358

17. Liu, M., Harbaugh, A.G., Harring, J.R., Hancock, G.R.: The effect of extreme re-
sponse and non-extreme response styles on testing measurement invariance. Fron-
tiers in psychology 8, 227387 (2017)

18. Luxton-Reilly, A., Denny, P., Plimmer, B., Bertinshaw, D.J.: Supporting student-
generated free-response questions. In: ITiCSE 2011. pp. 153–157. ACM (2011).
https://doi.org/10.1145/1999747.1999792

19. Macedo, N., Cunha, A., Pereira, J., Carvalho, R., Silva, R., Paiva, A.C.R., Ra-
malho, M.S., Silva, D.C.: Experiences on teaching alloy with an automated assess-
ment platform. Sci. Comput. Program. 211, 102690 (2021). https://doi.org/10.1
016/J.SCICO.2021.102690

20. Marques-Silva, J., Malik, S.: Propositional SAT solving. In: Handbook of Model
Checking, pp. 247–275. Springer (2018). https://doi.org/10.1007/978-3-319-10575
-8_9

21. Mendonça, M., Wasowski, A., Czarnecki, K.: Sat-based analysis of feature models
is easy. In: Muthig, D., McGregor, J.D. (eds.) SPLC 2009. ACM International
Conference Proceeding Series, vol. 446, pp. 231–240. ACM (2009), https://dl.acm
.org/citation.cfm?id=1753267

22. Messer, M., Brown, N.C.C., Kölling, M., Shi, M.: Automated grading and feed-
back tools for programming education: A systematic review. ACM Trans. Comput.
Educ. 24(1), 10:1–10:43 (2024). https://doi.org/10.1145/3636515

23. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: TACAS 2008.
LNCS, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-5
40-78800-3_24

24. Pelletier, F.J.: Seventy-five problems for testing automatic theorem provers. J.
Autom. Reason. 2(2), 191–216 (1986). https://doi.org/10.1007/BF02432151

25. Pnueli, A.: The temporal logic of programs. In: SFCS 1977. pp. 46–57. IEEE Com-
puter Society (1977). https://doi.org/10.1109/SFCS.1977.32

26. Rozier, K.Y.: On teaching applied formal methods in aerospace engineering. In:
FMTea 2019. LNCS, vol. 11758, pp. 111–131. Springer (2019). https://doi.org/10
.1007/978-3-030-32441-4_8

27. Sarsa, S., Denny, P., Hellas, A., Leinonen, J.: Automatic Generation of Program-
ming Exercises and Code Explanations Using Large Language Models. In: ICER
’22 - Volume 1. pp. 27–43. ACM. https://doi.org/10.1145/3501385.3543957

28. Shute, V.J.: Focus on formative feedback. Review of educational research 78(1),
153–189 (2008)

29. Sovietov, P.: Automatic Generation of Programming Exercises. In: TELE 2021.
pp. 111–114. IEEE. https://doi.org/10.1109/TELE52840.2021.9482762

30. Tiam-Lee, T.J.Z., Sumi, K.: Procedural generation of programming exercises with
guides based on the student’s emotion. In: SMC 2018. pp. 1465–1470. IEEE (2018).
https://doi.org/10.1109/SMC.2018.00255

31. Tscherter, V.: Exorciser: Automatic generation and interactive grading of struc-
tured excercises in the theory of computation. Ph.D. thesis, ETH Zurich, Zürich,
Switzerland (2004). https://doi.org/10.3929/ETHZ-A-004830877

32. Tu, Y.C., Terragni, V., Tempero, E., Shakil, A., Meads, A., Giacaman, N., Fowler,
A., Blincoe, K.: GitHub in the Classroom: Lessons Learnt. In: ACE 2022. pp.
163–172. ACM. https://doi.org/10.1145/3511861.3511879

https://doi.org/10.1109/SIITME.2015.7342358
https://doi.org/10.1109/SIITME.2015.7342358
https://doi.org/10.1145/1999747.1999792
https://doi.org/10.1145/1999747.1999792
https://doi.org/10.1016/J.SCICO.2021.102690
https://doi.org/10.1016/J.SCICO.2021.102690
https://doi.org/10.1016/J.SCICO.2021.102690
https://doi.org/10.1016/J.SCICO.2021.102690
https://doi.org/10.1007/978-3-319-10575-8_9
https://doi.org/10.1007/978-3-319-10575-8_9
https://doi.org/10.1007/978-3-319-10575-8_9
https://doi.org/10.1007/978-3-319-10575-8_9
https://dl.acm.org/citation.cfm?id=1753267
https://dl.acm.org/citation.cfm?id=1753267
https://doi.org/10.1145/3636515
https://doi.org/10.1145/3636515
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/BF02432151
https://doi.org/10.1007/BF02432151
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-030-32441-4_8
https://doi.org/10.1007/978-3-030-32441-4_8
https://doi.org/10.1007/978-3-030-32441-4_8
https://doi.org/10.1007/978-3-030-32441-4_8
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1109/TELE52840.2021.9482762
https://doi.org/10.1109/TELE52840.2021.9482762
https://doi.org/10.1109/SMC.2018.00255
https://doi.org/10.1109/SMC.2018.00255
https://doi.org/10.3929/ETHZ-A-004830877
https://doi.org/10.3929/ETHZ-A-004830877
https://doi.org/10.1145/3511861.3511879
https://doi.org/10.1145/3511861.3511879

	Introducing GitHub Classroom into a Formal Methods Module

