
On Writing SMT-LIB Scripts: Metrics and a New Dataset
Soaibuzzaman and Jan Oliver Ringert

S O F T W A R E E N G I N E E R I N G
C O M P U T E R S C I E N C E

SMT 2025
August 10, 2025, Glasgow, UK

p. 2

Motivation
• Popular datasets have been collected to benchmark SMT

solvers

• But: little is known about how people write SMT-LIB scripts,
especially novices

– Gap in understanding of the user experience
– Challenges and behaviors

• Our findings can inform better tool support and teaching
materials

p. 3

SMT-LIB
• SMT-LIB is the standard input format for

SMT solvers

• Widely used in verification, modeling,
and synthesis

• Disclaimer: APIs are another popular
way to express SMT problems

(set-logic UF)
; datatype for people in mansion
(declare-datatype Person (Agatha Butler Charles))
(declare-const Killer Person)
; a function/predicate to represent killing
(declare-fun killed (Person Person) Bool)
(declare-fun hates (Person Person) Bool)

; Charles hates no one that Agatha hates
(assert (forall ((x Person)) (=> (hates Agatha x)
 (not (hates Charles x)))))
; ...
(assert (killed Killer Agatha))
(check-sat)
(get-model)

p. 4

Formal Methods Playground
• A web app for writing and analyzing specifications in various modeling

and specification languages

• Provides basic language support for SMT-LIB

• Offers storage of permalinks, histories, etc

• Try it at: https://play.formal-methods.net

https://play.formal-methods.net/?check=ALS
https://play.formal-methods.net/?check=ALS
https://play.formal-methods.net/?check=ALS

p. 5

Our Contribution
• FMPsmt Dataset: a collection of 18,133 SMT-LIB scripts from the Formal Methods Playground

– 2,415 fine-grained editing paths (revision histories)
– Often starts from a blank canvas
– Scripts created by MSc students (Computer Science & Digital Engineering) from >= 2 Universities

• Analysis
– Structural metrics
– Syntactic + semantic script evolution
– Error patterns and edit distances

p. 6

Research Questions
• RQ1: What are the key characteristics of the FMPsmt dataset?

• RQ2: Where do users most commonly introduce syntactic errors?

• RQ3: How do consecutive SMT-LIB scripts differ?

• RQ4: How large are the edit distances between consecutive scripts?

• RQ5: How do users fix errors over multiple edit steps?

p. 7

RQ1: Dataset Characteristics
• Sizes:

– Median ELOC: 26
– Median operator nesting

depth in asserts: 5

• 38 logics used (typos included)

• Execution times: most < 0.03s

Q1 Median Q3 Max
ELOC 10 26 65 1,531
Max Nesting Depth 5 5 6 42
assert commands 2 7 23 287
declare-const commands 1 4 14 371
declare-fun commands 0 0 3 299
Time taken (s) (timeout of 600s) 0.02 0.02 0.03 318.27

• Edit paths:
– 2,415 paths, median length = 6
– 58% have ≥5 revisions

• Error:
– 59% of edit paths contain at least

one invalid script

p. 8

RQ2: Syntax Errors
• ~40% of all scripts have syntax errors

• Most frequent:
– Unknown constant (50%)

• Most error-prone commands: get-value, eval,
declare-fun

command abs. #
error

total
elements

rel. % of
command

assert 35,132 319,049 11.01%
declare-const 10,920 224,947 4.85%
declare-fun 6,870 46,489 14.78%
get-value 5,404 17,648 30.62%
define-fun 3,237 22,548 14.36%
get-model 2,071 12,762 16.23%
declare-datatype 1,787 18,152 9.84%
check-sat 134 28,318 0.47%
eval 104 372 27.96%
quantifiers 49 1,342 3.65%

Category Count Percentage
Unknown constant *constant_name* 35,509 50.13%
Invalid constant declaration *sort_name* 6,941 9.80%
Parsing function declaration *sort_name* 5,070 7.16%
Logic does not support 4,325 6.11%
Invalid declaration 3,629 5.12%
Model is not available 3,506 4.95%
Invalid sort 2,921 4.12%
Unknown sort * 2,587 3.65%
Unexpected character 928 1.31%
Invalid function decleration 856 1.21%

p. 9

RQ3: Semantic Comparison of SMT-LIB Scripts

• Verifies the semantic entailment between the assertion sets collected from
two compared scripts
– 𝑆1 ⊨ 𝑆2 and 𝑆2 ⊨ 𝑆1

• Naive
– Oblivious to variable renaming
– Ignores push and pop scopes
– Less intuitive for scripts that contain unsatisfiable assertions

S1, S2

≡

S1 S2

≠

S1S2

𝑆1 ⊂ 𝑆2

S2S1

𝑆2 ⊂ 𝑆1

p. 10

RQ3: How Scripts Change
• 4.3K consecutive edits were identical (users re-run same script)

• Consecutive semantic relationships (only if no syntax error in both scripts):
– 24% are equivalent
– 11% are refinements
– 10% are incomparable

• Users often refine or weaken scripts

Syntactically
Identical

Semantically
≡ ≠ S1 ⊂ S2 S2 ⊂ S1

Consecutive 4,319 6,332 2,805 1,149 1,748
Non-Consecutive 2,121 877 2,125 908 1,542

p. 11

RQ4: Edit Distance
• Median Levenshtein distance: 51 characters

• Most edits are small and local

• Long tail (max = 38,659):
– Some major rewrites
– Starts over completely

p. 12

RQ5: Fixing Errors
• Most syntax errors fixed in 1–3 steps

• Most UNSAT-to-SAT edits also fixed quickly (median = 1)

• Indicates trial-and-error debugging with occasional struggle
– Max steps to fix syntax error: 52
– Max steps from UNSAT-to-SAT: 58

p. 13

Key Findings & Conclusion
• Writing SMT-LIB scripts is error-prone for novices

– tooling matters!

• Edits are mostly small
– Suitable for interactive feedback

• Many errors could be mitigated with:
– Context-aware editors
– Scoping + reference checking
– Better error messages

• Data availability:
– Formal Methods Playground (public, open source)
– Dataset updated on Zenodo

• Language Support (ongoing):
– https://github.com/se-buw/smt-langium

p. 14

Questions?

